Question 17

It is known that 96% of train travellers on a certain route had a valid ticket.

A sample of 500 travellers is taken. For samples of 500 travellers, \hat{P} is the random variable of the distribution of sample proportions of travellers **without** a valid ticket.

 $Pr(\hat{P} \le \frac{3}{100})$, when approximated by a normal distribution, is closest to

- **A.** 0.1269
- **B.** 0.1333
- **C.** 0.1513
- **D.** 0.4991
- **E.** 0.8731

Question 18

Let
$$f(x) = x^2$$
 and $g(x) = \log_e(2 - 4x)$.

The maximal domain of f for the composite function g(f(x)) to exist is

A.
$$x \in \left(-\infty, -\frac{1}{2}\right)$$

B.
$$x \in \left[-\infty, -\frac{\sqrt{2}}{2}\right] \cup \left[\frac{\sqrt{2}}{2}, \infty\right]$$

C.
$$x \in \left(-\infty, -\frac{\sqrt{2}}{2}\right) \cup \left(\frac{\sqrt{2}}{2}, \infty\right)$$

$$\mathbf{D.} \qquad x \in \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$\mathbf{E.} \qquad x \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$$

Question 19

The equation sin(kx) = 1 where $x \in [0, 2\pi]$ has **no solutions** when

- **A.** $k \in R$
- **B.** $k \in \pi$

$$\mathbf{C}. \qquad k \in \left[\frac{1}{4}, \infty\right]$$

$$\mathbf{D.} \qquad k \in \left[0, \frac{1}{4}\right]$$

$$\mathbf{E.} \qquad k \in \left[-\frac{3}{4}, 0 \right]$$