g.	i.	domain: $[4, \infty)$	A1
	ii.	$d(x) = (\sqrt{x+4} + 2)^2 - (x - 4\sqrt{x})$	
		$=(\sqrt{x+4}+2)^2 - x + 4\sqrt{x}$	Al
	iii.	$d(x) = (\sqrt{x+4}+2)^2 - x + 4\sqrt{x}$	
		$=4\sqrt{x+4}+4\sqrt{x}+8$	M1
		$4\sqrt{x+4} > 0$ and $4\sqrt{x} > 0$ for $x \in [4, \infty)$.	
		$\Rightarrow d(x) > 0 \text{ for } x \in [4, \infty).$	
		\therefore vertical distance > 0 and graphs do not intersect	A1
h.	The minimum vertical distance between $h(x)$ and $h^{-1}(x)$ occurs at the end point of $h(x)$, where $x = 4$.		
	$d(4) = 16 + 8\sqrt{2}$		
	$q(x)$ is $\therefore c \leq$	s a transformation of the graph of $y = h(x)$ by $-c$ units upwards. $-16 - 8\sqrt{2}$	A1
Question 5 (11 marks)			

a. i.
$$f'(x) = (x - k + 1)e^x$$
 A1

ii. Let
$$f'(x) = 0$$
.
 $\Rightarrow x = k - 1$
 $f(k - 1) = -e^{k - 1}$
A1

: stationary point:
$$(k-1, -e^{k-1})$$
 A1

b. Two solutions occur between the stationary point and *x*-axis, which is an asymptote for f(x). $n \in (-e^{k-1}, 0)$

c. i.
$$\frac{d}{dx}[xe^x] = x \times e^x + 1 \times e^x$$
 use product rule M1

$$= (x+1)e^x$$
 as required

A1