$e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j}$, $0 \le t \le \pi$. The velocity vector of particle P is denoted by $\mathbf{r}(t)$.	2
Determine the particle's initial velocity.	3 ma
Show that $\mathbf{r}(t)$ always makes an angle of $\frac{\pi}{t}$ with $\dot{\mathbf{r}}(t)$.	 4 ma
Show that $r(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{r}(t)$.	4 ma
Show that $\underline{r}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{\underline{r}}(t)$.	 4 ma
Show that $\underline{\mathbf{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{\underline{\mathbf{r}}}(t)$.	4 ma
Show that $\underline{r}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\underline{\dot{r}}(t)$.	4 ma
Show that $\underline{\mathbf{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{\underline{\mathbf{r}}}(t)$.	4 ma
Show that $\underline{r}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{\underline{r}}(t)$.	4 ma
Show that $\underline{\underline{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\underline{\dot{r}}(t)$.	4 ma
Show that $r(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{r}(t)$.	4 ma
Show that $\underline{\underline{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\underline{\dot{r}}(t)$.	4 ma
Show that $\underline{\mathbf{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\dot{\underline{\mathbf{r}}}(t)$.	4 ma
Show that $\underline{r}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\underline{\dot{r}}(t)$.	4 ma
Show that $\underline{\underline{r}}(t)$ always makes an angle of $\frac{\pi}{4}$ with $\underline{\underline{\dot{r}}}(t)$.	4 ma

A particle P moves such that at time t its position vector $\mathbf{r}(t)$ from a fixed origin is given by

END OF QUESTION AND ANSWER BOOKLET

Question 10 (7 marks)